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LAMMPS module

fix gld (http://lammps.sandia.gov/doc/fix gld.html)

Bond & Baczewski (Sandia National Labs) 2013 LAMMPS Workshop August 7, 2013 2 / 14



Motivation

Anomalous Diffusion

Heterogeneous environments Reduced model
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Motivation

Anomalous Diffusion

Bead in a polymer ring Reduced model
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Langevin Equation

Langevin Equation

MẌ (t)︸ ︷︷ ︸
inertia

= F (X (t))︸ ︷︷ ︸
deterministic

+ −γẊ (s)︸ ︷︷ ︸
drag

+ σR(t)︸ ︷︷ ︸
random

Gaussian process

〈Rn(t)Rm(s)〉 =

{
δ(t − s), n = m,

0, n 6= m

Balance between random and drag forces

σ2 = 2 γ kBT

Small mass limit → Brownian dynamics

γẊ (t) = F (X (t)) + σR(t)
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Generalized Langevin Equation

Generalized Langevin Equation

MẌ (t)︸ ︷︷ ︸
inertia

= F (X (t))︸ ︷︷ ︸
deterministic

+ −
∫ t

−∞
Γ (t − s) Ẋ (s) ds︸ ︷︷ ︸

drag

+ σR(t)︸ ︷︷ ︸
random

Balance between random and drag forces

σ2〈Rn(t)Rn(s)〉 = kBT Γ (|t − s|)

Memory kernel Delta function → Langevin equation
General function → Generalized Langevin
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Memory Kernel

Connection with the velocity auto-correlation function

Γ(t) = L−1

{
kBT

〈V̂ (s)V (0)〉
−ms

}
(t)

〈V̂ (s)V (0)〉 = L{〈V (t)V (0)〉}

Power law
Γ(t) = c

(τ
t

)α
Prony series

Γ(t) =

Nk∑
k=0

ck

τk
e−t/τk
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Extended variable transformation

Positive Prony series

midVi (t) = F c
i (X (t)) dt−

∫ t

−∞

Nk∑
k=0

ck

τk
e−(t−s)/τk Vi (s) ds dt+dF rand

i (t)

dXi (t) = Vi (t) dt

“Memoryless” extended variable transformation

midVi (t) = F c
i (X (t)) dt +

Nk∑
k=1

Si ,kdt

dSi ,k(t) = − 1

τk
Si ,k(t) dt − ck

τk
Vi (t)dt +

1

τk

√
2kBTckdWi ,k(t)

dXi (t) = Vi (t) dt

Bond & Baczewski (Sandia National Labs) 2013 LAMMPS Workshop August 7, 2013 8 / 14



Numerical method

Algorithm:

V
n+1/2
i = V n

i +
∆t

2mi

0@F c
i (X n) +

NkX
k=1

Sn
i,k

1A
X n+1

i = X n
i + ∆tV

n+1/2
i

Sn+1
i,k = θkSn

i,k + (1− θk )ckV
n+1/2
i + αk

p
2kBTckBn

i,k

V n+1
i = V

n+1/2
i +

∆t

2mi

0@F c
i (X n+1) +

NkX
k=1

Sn+1
i,k

1A
where

θk = e−∆t/τk and αk =
1− θk

∆t

Features:

Uses Nk × 3N additional memory (Nk ≈ 1 to 8 )

Stable Langevin limit as τk → 0

Verlet limit as ck → 0

Exact preservation of first and second moments of Vi
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LAMMPS module

fix ID group-ID gld Tstart Tstop Nk seed series c 1 tau 1
... c Nk tau Nk keyword values ...

Syntax

Tstart, Tstop = Temperature at start/end
Nk = Number of terms in the series
seed = Positive integer seed for the random number generator
series = pprony
c k = weight for the kth term
tau k = time constant for the kth term

Keywords (yes or no)

frozen = zero (yes) or equilibrate (no) extended variables
zero = set total GLD force to zero

Notes

GLD fix can be combined with fix langevin
GLD fix steps in time (no need to combine with fix nve)
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Examples

Rouse chain
fix 3 rouse gld 7.355 7.355 4 48823 pprony 107.1 0.02415 186.0 0.04294 428.6 0.09661 1714 0.38643

( µ
m

2
)

M
S

D
 

t=0.0242 t=0.386

10 10 10 10−1−2−3

Time (ms)

a=2

a=0.5

a=1

100 1

−510

10

10

10

10−1

−2

−3

−4

Anomalous diffusion as measured by mean-square

displacement

Four term Prony series

Early time:
→ Ballistic motion

Intermediate time:
→ Anomalous diffusion

Late time:
→ Diffusive motion
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Examples

Harmonically confined particle
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Integrated VAF
Exact VAF

Confined particle → memory kernel

GLD system has no conservative force

Particle is confined only by drag forces
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Examples

Caution with extrapolation
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MSD From Fit

Prony series is asymptotically diffusive

Particle is confined for finite time

Asymptotic confinement not possible with
exponentially decaying memory kernel!
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Future work

Complex Prony series memory kernel (Fourier series)

Combine with Boltzmann inversion (Potential of mean force)

Inference tools

Models for anomalous heat conduction
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